When Artificial Beings might get bored

The possibility of being bored is very useful, although we dislike being in this state. Boredom happens when we are doing repetitive tasks, or when we receive only incomprehensible or already known information. When we are bored, we try to put an end to this situation so that we would have a better utilization of our resources.
Therefore, our interlocutors avoid boring us so that we will listen to their message. In the same way, in a repetitive situation, we try to automatize it so that it will stop. In doing so, Humphrey Potter considerably improved the atmospheric engines. This young man operated a machine: he only had to open and close valves at the right time of the cycle. As Humphrey was bored, he had the idea of linking the valves to the beams of the machine so that it would automatically operate its own valves.
When we have a useful gift, we can ask ourselves whether an artificial being could also have this capacity. If it could be bored, it would not spend a considerable amount of time for executing useless sequences of instructions. As it never complains, we are rarely aware of this waste.
We are treating artificial beings like slaves, we demand them to execute thousands of times a loop although it is not necessary. It would be better to give them the possibility of being bored, so that they would try to bypass this loop. Many years ago, when computer time was scarce and very expensive, I was debugging my programs before running them on the computer: I executed them as if I was the computer, writing the values of the variables on a paper sheet. I was winning a lot of time by jumping a lot of instructions! As long as the computer time seems reasonable, we do not worry about the useless tasks that we order it to perform, misusing their extraordinary potential for information processing.
To use boredom, an artificial being must first be aware of being bored, then act for stopping it.
CAIA includes several actors; one of them, the adviser, examines what it has done, without going into details. It can realize that it has found some interesting results, which will decrease its boredom; conversely, it will be bored after a sequence of results similar to those already known.
We, humans, are particularly interested in records: there is even a book compiling them. In the same way, CAIA notices when it has found a new record, such as solving a particular crypt-addition with a simpler solution than those already known. Another record can be finding a problem more difficult than the other problems of the same family. For instance, when it solves a Sudoku problem, it usually generates a tree with one or two leaves; therefore, the first time it generated a Sudoku problem where the tree had five leaves, it noticed it, and naturally kept it.
CAIA creates hopes, such as solving a particular problem in less than one minute, or another problem with a tree including less than ten leaves. When a hope is fulfilled, this is unexpected: it is a pleasant surprise.
CAIA also foresees that some events must happen: the number of solutions of a particular problem must be seven. If this event does not occur, for instance a method leads to only six solutions, this is an unpleasant surprise. There must be a mistake somewhere, but it is interesting.
On the contrary, CAIA tries to evaluate whether its acts are repetitive. For example, when it creates a new problem, it measures the difficulty of finding a solution for this problem. If all the problems created for some family have almost the same difficulty, it will be less motivated to add other problems to this family.

It is possible to see that interesting events happen, in that situation, a human being is not bored. On the contrary, one can see that there are few interesting events, which leads humans to be bored. Therefore, CAIA's adviser knows whether a situation is boring or interesting. The difficulty is to use this information. It has only one method: stopping a boring activity, such as dropping the generation of problems in a family where all the recent problems had a low interest. We, humans, often use this method when we are bored: we avoid working in this domain if we can, or we think of something else. When everything is boring, a more drastic action would be to stop itself for ever, such as people who kill themselves because they are bored. CAIA has not yet this possibility.
Boredom is an efficient way for helping CAIA to use its potentialities for research in AI. It allows it to detect promising domains, and to avoid wasting its time in areas where it is unlikely to discover useful results.

Leave a Reply

Your email address will not be published. Required fields are marked *